منابع مشابه
A note on the Gini means
We correct a proof given in [1] for the one-parameter family of Gini means, and point out general remarks on the general Gini means. 2000 Mathematical Subject Classification: 26D15, 26D99
متن کاملA note on welfare measures
I show that the “consumption variation” approach, commonly used in infinitely lived agent models to measure the welfare impact of a policy, is not accurate in overlapping generations environments. While in an infinitely lived agent environment the consumption variation can be shown to be equivalent to a measure based on the Hicks compensation principle, this is not true in overlapping generatio...
متن کاملA Note on Invariant Measures
The aim of the paper is to show that if F is a family of continuous transformations of a nonempty compact Hausdorff space Ω, then there is no F-invariant probabilistic regular Borel measures on Ω iff there are φ1, . . . , φp ∈ F (for some p ≥ 2) and a continuous function u : Ω → R such that P σ∈Sp u(xσ(1), . . . , xσ(p)) = 0 and lim infn→∞ 1 n Pn−1 k=0 (u ◦ Φ )(x1, . . . , xp) ≥ 1 for each x1, ...
متن کاملThe Gini Index and Measures of Inequality
The Gini index is a summary statistic that measures how equitably a resource is distributed in a population; income is a primary example. In addition to a self-contained presentation of the Gini index, we give two equivalent ways to interpret this summary statistic: first in terms of the percentile level of the person who earns the average dollar, and second in terms of how the lower of two ran...
متن کاملA Note on the Generalized q - Bernoulli Measures with Weight α
and Applied Analysis 3 see 3, 4, 15, 16 . By 1.5 and 1.7 , the Witt’s formula for the q-Bernoulli numbers with weight α is given by ∫ Zp x qαdμq x β̃ α n,q , where n ∈ Z . 1.8 The q-Bernoulli polynomials with weight α are also defined by
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Review of Income and Wealth
سال: 2018
ISSN: 0034-6586,1475-4991
DOI: 10.1111/roiw.12373